4,872 research outputs found

    Surface reactivity of supported gold : I. Oxygen transfer between CO and CO2

    Full text link
    The rate of redistribution of isotopic carbon between CO and CO2 has been studied on Au supported on MgO in the temperature range 300 to 400 [deg]C, Pco2/Pco ratios 0.1 to 1.2 and total pressure of 50 Torr. A few experiments were also carried out on supported Ru and Pt. The effect of Au concentration, temperature, and catalyst preparation method have been selected for investigation. In addition, determinations of the particle size of Au have been carried out by X-ray to illustrate the effect of the temperature of reduction and decomposition of the Au salt upon the particle size of the metal in the supported catalyst. Chemical reduction of the Au salt at low temperature (Kinetic observations have been employed to study the thermodynamic and kinetic factors contributing to the activity of Au surfaces in the oxygen transfer step between gas and surface phases. Au activity was found to decrease with increasing Pco2/Pco ratio, indicating that reduced surface species (metal atoms) play a dominant role in the reactivity of the surface. A similar trend was found for Ru and Pt at low ratios Pco2/Pco. For Pt at higher Pco2/Pco ratios, a reactivity inversion was found. Under similar conditions of gas composition, temperature and support, the affinity of the Au surface for oxygen increased with decreasing particle size. The degree of dispersion of Au was found to influence the rate of the catalytic reaction. The effect has been interpreted in terms of a relation between metal particle size and gas mean free path.The usefulness of these studies for developing criteria for control of oxidation depth and selectivity behavior in catalytic oxidations through optimization of size, size distribution of metal particles, and their morphological connection with the supporting agent is emphasized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32723/1/0000091.pd

    Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene

    Get PDF
    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.1132Ysciescopu

    KMT-2016-BLG-2052L: Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Time-scale Event

    Full text link
    We present the analysis of a binary microlensing event KMT-2016-BLG-2052, for which the lensing-induced brightening of the source star lasted for 2 seasons. We determine the lens mass from the combined measurements of the microlens parallax \pie and angular Einstein radius \thetae. The measured mass indicates that the lens is a binary composed of M dwarfs with masses of M10.34 MM_1\sim 0.34~M_\odot and M20.17 MM_2\sim 0.17~M_\odot. The measured relative lens-source proper motion of μ3.9 mas yr1\mu\sim 3.9~{\rm mas}~{\rm yr}^{-1} is smaller than 5 mas yr1\sim 5~{\rm mas}~{\rm yr}^{-1} of typical Galactic lensing events, while the estimated angular Einstein radius of \thetae\sim 1.2~{\rm mas} is substantially greater than the typical value of 0.5 mas\sim 0.5~{\rm mas}. Therefore, it turns out that the long time scale of the event is caused by the combination of the slow μ\mu and large \thetae rather than the heavy mass of the lens. From the simulation of Galactic lensing events with very long time scales (tE100t_{\rm E}\gtrsim 100 days), we find that the probabilities that long time-scale events are produced by lenses with masses 1.0 M\geq 1.0~M_\odot and 3.0 M\geq 3.0~M_\odot are 19%\sim 19\% and 2.6\%, respectively, indicating that events produced by heavy lenses comprise a minor fraction of long time-scale events. The results indicate that it is essential to determine lens masses by measuring both \pie and \thetae in order to firmly identify heavy stellar remnants such as neutron stars and black holes.Comment: 9 pages, 11 figure

    Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study

    Full text link
    We study the two-dimensional XY model with quenched random phases by Monte Carlo simulation and finite-size scaling analysis. We determine the phase diagram of the model and study its critical behavior as a function of disorder and temperature. If the strength of the randomness is less than a critical value, σc\sigma_{c}, the system has a Kosterlitz-Thouless (KT) phase transition from the paramagnetic phase to a state with quasi-long-range order. Our data suggest that the latter exists down to T=0 in contradiction with theories that predict the appearance of a low-temperature reentrant phase. At the critical disorder TKT0T_{KT}\rightarrow 0 and for σ>σc\sigma > \sigma_{c} there is no quasi-ordered phase. At zero temperature there is a phase transition between two different glassy states at σc\sigma_{c}. The functional dependence of the correlation length on σ\sigma suggests that this transition corresponds to the disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure

    Branes in the plane wave background with gauge field condensates

    Full text link
    Supersymmetric branes in the plane wave background with additional constant magnetic fields are studied from the world-sheet point of view. It is found that in contradistinction to flat space, boundary condensates on some maximally supersymmetric branes necessarily break at least some supersymmetries. The maximally supersymmetric cases with condensates are shown to be in one to one correspondence with the previously classified class II branes.Comment: LaTeX, 31 pages, no figures; v2: references added, some typos correcte

    Fine structure of alpha decay in odd nuclei

    Get PDF
    Using an alpha decay level scheme, an explanation for the fine structure in odd nuclei is evidenced by taking into account the radial and rotational couplings between the unpaired nucleon and the core of the decaying system. It is stated that the experimental behavior of the alpha decay fine structure phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review

    Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy

    Full text link
    The electrical detection of the surface states of topological insulators is strongly impeded by the interference of bulk conduction, which commonly arises due to pronounced doping associated with the formation of lattice defects. As exemplified by the topological insulator Bi2Te2Se, we show that via van der Waals epitaxial growth on thin hBN substrates the structural quality of such nanoplatelets can be substantially improved. The surface state carrier mobility of nanoplatelets on hBN is increased by a factor of about 3 compared to platelets on conventional Si/SiOx substrates, which enables the observation of well-developed Shubnikov-de Haas oscillations. We furthermore demonstrate the possibility to effectively tune the Fermi level position in the films with the aid of a back gate
    corecore